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ABSTRACT

)‘This paper describes a systolic array for the computation of n-dimensional (#-D) convolutions for any
positive integer n. Systolic systems usually achieve high performance by allowing computations to be
pipelined over a large array of processing elements. To achieve even higher performance, the systolic array of
this paper utilizes a second level of pipelining by allowing the processing elemcents themselves to be pipelined
to an arbitrary degree. Moreover, it is shown that as far as orders of magnitude are concerned, the total
amount of memory required by the systolic array is no more than that needed by any convolution device that
reads in cach input data item only once. Thus if only schemes that use the minimum-possible I70 are
considered. the systolic array is nct only high performance, but also optimal in terms of the amount of

required memory.
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special-purpose processor, minimum /0 requirement, VLSL

T T YT Y—




1. Introduction

Mutti-dimensional convolutions constitute some of the most compute-intensive tasks in signal and image
processing. For example, a 2-D convolution using a general 4x4 kernel requires 16 multipliéalions and 15
additions to generate cach pixel in the output image. If the dimensionality is higher or the kernel is larger,
even more arithmetic operations would be required. Though computationally demanding, convolution is
nevertheless a highly regular computation. By exploiting the regularity inherent to the computation, cost-
effective, high performance systolic arrays, that are capable of using many systolic cells in parallcl, have been
proposed or built to perform multi-dimensional convolutions [1, 2, 3, 4, S, 8).

Previously proposed systems, however, suffer from two drawbacks. Firstly, they do not take advantages of
the possibility that arithmetic units could themselves be pipelined. Secondly, they cannot be uscd to perform
convolutions of arbitrary dimensionality—they can for example perform only 1-D or 2-D convolutions, but
not both.

Section 2 of this paper describes a systolic array for 1-D convolution which utilizes pipelined arithmetic
units. The systolic array is extended and optimized in Section 3 to handle multi-dimensional convolutions.
By adjusting the memory size of each cell of the systolic array, the array can be used for convolutions of any
dimensionality. It is shown in Section 4 that the total amount of memory required by the systolic array is
optimal in the sense that the same amount of memory is required by any scheme that reads in each input pixel
only once. The final section contains some concluding remarks. .

2. 1-Dimensional Convolution

2.1. Problem Definition
Given a vector of signals X = {x}.i=12,...,n, and another vector of weights W= {w} j=12.....k

with k « n, convolving signal X with “kernel” W is to compute
k-1

Ys= Z Wie1r X4 o
i=0

for s=12,....,n- k+ 1. Imagine that the vector indices increase from left to right. The first result, y, is
obtained by aligning the leftmost element of W with the leftmost element of X, then computing the inner
product of W and the scction of X that W overlaps. To produce the second result, y,, the_kernel slides one
position rightward and the inner product calculation is again performed on the overlap. The last result,
Yn=k+3, 18 Obtained when rightmost clement of #is aligned with the rightmost element of X.
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2.2. Systolic Array for 1-D Convolution

Rather than viewing the kernel as sliding over the signal. as described above, one can consider the kernel as
being fixed in space and the signal as sliding over the kernel. This view suggests a linearly-connected array for
performing convolution, in which each cclt holds a single kernel clement throughout the computation, and
the signal passes through the array, say, from left to right. An array operating in this fashion is shown in
Figure 2-1. In each cell a signal clement is held by a register, and the multiplier may be pipclined to an
arbitrary degrec. Note that moving the signal from right to left causes the kernel indices to increase right to
left,

te?: w, X, + w,y X, + w, %, + w, X,
teg: w, % + w, X, + w, %, . w, X,
Ya MULTIPLIER Y3 I N “1 N
wolw,|w, sz wylw, . w,|w, |w, o w, {w, | w,
Xs % | % 1%, [ xg | % > % | % | *a %%, %
Xy "l 5 Xs > X

Figure 2-1: Linear-connccted array for 1-D convolution.

In the figure we sce that all the terms of a particular result y appear at the multiplicr outputs at the same
instant. They can be summed up by using a nipelined tree-adder (sce, e.g..[7]). However, the intercon-
nections needed to implement the adder tree are not local when the number of terms is large. This difficulty
is avoided in the systolic approach where additions required in summing the terms of a result are apportioned

to all cells uniformly and performed in different ccll cycles [2, 3}.

We consider the particular systolic design—design W2 in the [3}—where each cell produces its term of a
result nne cycle earlier than the cell to its right produces its term for the same result. The skew can be
accomplished by replacing in each cell the single-stage register, which transfers the signal stream, with a
two-stage shift register. For the general case when the adder in cach cell is a multi-stage pipcline unit, the
number of stages of the shift register should be one greater than that of the adder. The remainder of this
paper assumes the systolic array structure shown in Figure 2-2 with the following parameters for its cells:

->y1
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¢ M = the number of pipeline stages of the multiplier unit,

e A = the number of pipeline stages of the adder unit, and

o R = the number of stages of the shift register, with R = A+ 1.

The stage times for the multiplier, adder and shift register are assumed to be the same.

—— ] CELL CELL - ces »{ CELL .

(a) y 1 2 c

X om—m——h o s ¢ ¢ mem———

W
Yin s . s " Yout
1821135
ADDER
() - S$i(%)** "™
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Xin S| 82]°°° % > Xout

SHIFT REGISTER

Figure 2-2: (a) Systolic 1-D convolution array and (b) its cell definition.

Figure 2-3 shows snapshots of an execution of a 1-D convolution on a 4-cell systolic array with M =4, 4 =
2, and R = 3. In the figure, x, enters the array at time 0, and p, stands for a partial result of y. We see that




results y;'s are output from the rightmost cell at a rate of one result per stage time of the multiplicr (or adder).

There is no broadcast or unbounded fan-in in the system; each cell communicates only with its immecdiate
neighbors. This allows indefinite expansion of the array which, for electrical and timing reasons, would be

impossible if global communication paths existed.

3. Muiti-Dimensional Convolution

3.1. Problem Definition
Multi-dimensional convolution is a straightforward generalization of 1-D convolution, as illustrated by the

definition of 2-D convolution below.

Given a 2-Dssignal (or image) X = {x;}.i=12,...,mj=12,...,n,and a2-D kernel W= {w;}.i= L2,

... kj=12...,p with k«mand p< n, convolving X with W'is to compute
k=1 p=1

Is= Z Z Wivij+1 Xivrj+s

. =0 j=0
forr=12,....m—=k+1and s=12,...,n—p+ 1 Imagine that the indices increase rightward and
downward. Then the first result, y,,, is generated by placing the kernel over the image such that wy; covers xy,
multiplying the corresponding clements of W and X, and then summing these products. The kernel slides
one position to the right for the generation of the second result, y;,. After the last element of the first output
row is computed, the kernel moves one position downward and back to the left edge of the image. As the
kernel slides rightward, the second row of output is produced. Repeat this step for all rows until the last result

is produced when wy, COVers Xpy

3.2. Converting n-D Convolution into 1-D Convolution

The problem of computing an #-D convolution can be converted into that of computing a 1-D convolution,
and therefore the n-D convolution can be performed on a systolic array for 1-D convolutions. For example,
the 2-D convolution defined above can be viewed as a 1-D convolution with the signal and kernel defined as

follows. The signal is

X =[x;0. X0, ..., Xppl,

where x;» = X;, Xj5, - . . X ;s that is, the signal is the concatenation of the rows of the given 2-D signal (or
image) and has a total length of mn. The kernel is (u!v stands for the value v repeated u times):

W= [Wlo.(n - p)!O.wzo. v ,(n—p)!O. Wko],

where wp = wy, ..., w;,; that is, the kerncl is the concatenation of the rows of the given 2-D kernel, with a
(ol () ip 1 g
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Figure 2-3: Snapshots of an exccution of a systolic 1-D convolution array with W =4, 4 =2, and R=3,
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veetor of (n—p) zero ¢lements inseried between each consccutive pair of rows, ‘The length of the kernel is
therefore n{k ~ 1) + p. To illustrate the definition, consider an cxample where the image is 5 rows by 4
columns (m = 5, n = 4), and the kernel is 3 rows by 2 columns (k = 3. p = 2). The 1-D signal is formed from

the 2-D image as follows {an element in the image is specified by its 2-1D row-column index):

x =[1112,13,14,21 22,23.24,31,32,33.34.41,42,43,44,51,52 53,54),

and the 1-D kernel is formed from the 2-D kerael as follows:

IV ={1112,0021220.0.3132]

Figure 3-1 shows snapshots of several kernel positions, cach corresponding to the gencration of some result,
from both the 1-D and 2-D viewpoints. In the figure, kernel indices are shown on the top of signal indices.
Configuration for generating the first result, y,,, is shown in Figure 3-1(a). The kernel moves one position to
the right to produce the second result, y,,, as shown in Figure 3-1(b). Aficr the last result of the first row, y;,
is produced, the kernel slides one position to the right. At this point an invalid result is generated, which must
be ignored. This situation is shown in Figure 3-1(c). Next, the first element of the second row is produced, as
shown in Figure 3-1(d). The kemnel continues to slide to the right until the final result, y,,, is gencrated
(Figure 3-1(¢)). Although in the general case p~1 invalid results are generated for each row of output (except
the last), the fraction of total results which are invalid is very small because p< 2. '

The above method of converting a 2-D problem into a 1-D problem can be generalized to that of convert-
ing an n-D problem into a 1-D problem. To illustrate the idea, consider a 3-D signal with 3 plancs by 3 rows
by 3 columns, and a 3-D kernel with 2 planes by 2 rows by 2 columns. The 1-D signal is formed as follows
(using the 3-D plane-row-column index):

X =[111,112,113,121,122.123,131,132,133,211.212.21 3,221,222,223.231,232,233,311,312,313,
321,322,323,331,332,333),

and the 1-D kernel is formed as follows:

W=(111,112,0121122,000.0.211,212,0,221,222).

The position of the kernel for the generation of the first result is shown in Figure 3-2. The 1-D signal is
formed by concatenating the rows of the first plane of the 3-D signal, followed by the rows of the sccond
plane, etc. The 1-D kernel is formed by concatenating the rows of the first plane of the 3-D kernel, with zero
vectors in between, followed by a larger vector of zeros sufficient to “cover” the remainderof the first signal
plane, then followed by the rows of the second planc of the 3-D kernel with zero vectors in between, cic. One
can check that a total of 14 results are generated, of which 8 are valid. As the size of the 3-D signal increases,
the fraction of results which are invalid becomes very small, as in the 2-D case.
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Figure 31: Snapshots of a 2-D convolution computation from both 1-D and 2-D viewpoints.
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kernel kernel

plane 1 plane 2

1Ll 112 211 212

i1l 112 113 211 212 213 311 312 313
121 122 221 222

121 122 123 221 222 223 321 322 3a3
131 132 133 231 232 233 331 332 333
signal plane 1 signal plane 2 signal plane 3

Figure 3-2: Generation of the first result of a 3-D convolution.

3.3. “Optimized’”’ Systolic Array for Multi-Dimensional Convolutlon'

From the preceding discussion, we see that when an n-D convolution is convérted into'a 1-D convolution, a
kerncl containing a large number of zero elements may be introduced. If the systolic array of Section 2.2 is
applied to perform the 1-D convolution dircctly, then a large number of cells would be needed in the array,
and cells with zero weights would perform no uscful work. We show here that a kernel containing a large
number of zeros can be accommodated on a small array, for which the number of stages of the shift register in

cach individual cells is adjustable.

Consider a cell containing a zero kernel element. From Figure 2-2, we scc that the only effects of that cell
are to delay the y stream by 4 cycles and the x stream by R = 4 + 1 cycles. Therefore if this cell is replaced
with a cell that just introducos zero cycle delay for the p stream (a direct path) and a single cyvcle delay for the
x stream, the same result stream would be gencrated, although cach result would appear A4 cycles carlier than
before. This degenerate cell may in turn be absorbed into the cell to the left by increasing the number of shift
register stages of that cell by one, to 4 + 2. From thesc obscrvations, we note that the systolic array neceds
only g cells, where g is the number of non-zero elements in the kernel: these non-zcro elements are loaded
into consecutive cells of the array. For i=1,2,...,4—1, let Z; be thc number of zero kcrnel elements
between the kerncl clements stored in cell i and cell i + 1, and R; the number of stages of the shift register in

cell i. The shift registers are configured such that

Ri=A+1+2Z,

T ; "Amﬁm’_ "L T -’i . - -
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As an example, if 4 = 2 and B =[3.0,0.5.9.0.6). only 4 cells are needed, with weight 6 stored incell 1. 9 in cell
2 5 in cell 3, and 3 in cell 4. and with [R.R,.R,]=1[3.3.5). A series of snapshots of a 2-D convolution

computation on this systolic array are show in Figure 3-3.

If A+ 1+ Z, exceeds the physical capacity of the shift register of cell i, the problem can sull be solved by
using dummy cells. For example a dummy cell /. having a zcro as its kerncl element, can be introduced
betweencell fandcell i + 1, such that R; + R; =24+ 1 + 2,

The “cell-saving™ technique described in this section is useful for 1-D convolutions derived from n-D
convolutions, because in this case 1-D kernels contain large numbers of zero clements. The following
theorem summarizes the propertics of the systolic array that is capable of solving the 2-D convolution
problem considered in Sections 3.1 and 3.2.

Theorem 1: The convolution of an mxn image with a kxp kernel (& < p) can be performed on a
linearly-connected systolic array of kp cells, where cells ip, i=1.2....,k~1, each have a shift

register of 4 + 1 + n— p stages, and the rest of the cells each have a shift regisier of 4 + 1 stages.
(A total of O(4n) memory is thus needed for all the shift registers.)

A theorem corresponding to the case when p < k can be oblained in a similar way.

4. Memory Requirement

The systolic convoiution array described above relies on the availability lon 2 shift registers in many cells. Is
this an excessive use of memory? This section shows that as far as orders of magnitude are concerned, the
total amount of memory required by the systolic array is no more than that needed by any convolution device
that reads in each input pixel only once. Thus if we restrict ourselves to schemes that use the minimum-
pussible 170, the systolic array is not only high performance, but also optimal in terms of the amount of

required memory.

To be precise, we model in Figure 4-1 the [/O behavier of a special-purpose convolution device. The
convolution device retrieves input pixels from some external memory and performs computations on them.
Computed results are stored back either to the same external memory as shown in the figure or to another
memory. The external memory is typically a disk, rather than the fast memory of a computer, in order to
store large images. In this case, 170 with the external memory is relatively slow; we assume that it is necessary
that each input pixel originally stored in the external memory be brought out to the convolution device only
once so that 70 will not be a botdeneck. To accomplish this, some form of memory assigned specifically to
the convolution device, called the device memory here, is needed, since cach input pixel is used multiple

times to compute multiple output pixcls. The device memory may be a line buffer capable of holding a
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Figure 3-3: Snapshots of a 2-D convolution computation on a lincarly-connected systolic array.
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number of image lines (sce, ¢.g.. [4]), or a mcmory distributed over cells of the device as in the case of the
systolic convolution array described in the preceding section. Theorem 3 below cstablishes a lower bound on
the size of the device memory, i.e., the number of pixel values it must hold, for any 2-D convolution device.

The proof can be generalized to the n-D case for any nin a straightforward way.

External

Memory “—T

» Convolution
Device

Figure 4-1: 1/0 model of a convolution device.

We make an important (and quite reasonable) assumption that the convolution device treats elements in
the image and in the kerne) as indcterminates. Thus the device never looks into values of the elements, nor
possible relations among them, in order to decide what to do next. In other words, the désign or the program
of the device is data independent.

The proof of the thcorem is based on an information-theoretic argument and uscs the the following well
known result [6]:

Lemma 2: To bisect an mxn mesh-connccted graph at least ¢-n edges have to be removed,
where ¢ > 0 is a constant independent of n.

Bisecting a graph means partitioning the graph into two subgraphs, each containing about half of the nodes of
the original graph. Here we assume that the number of nodes in each subgraph is within the range of (1/2)mn
+2kn. .

Theorem 3: Consider convolving an m x n image with a kX p kerncl on a convolution device,
where n<m, k<p, and m, n are arbitrarily large. If the device is allowed to read in cach input
pixel only once, then it requires a memory of size at least proportional to kn.

Proof: Assume that there is a moment when the number of pixels that has becen output by the
convolution device is within the range (1/2)mn = kn. (It will be shown at the end of the proof that
this assumption is without loss of generality.) At this moment, let U be the sct of pixel locations in
the input image whose values have been input from the external memory to the device memory,
and V the sct of pixcl locations in the output image whose values have been output from the
convolution device. Consider the mx n mesh-conncected graph. Notice that ¥ and its complement
define a biscction of the graph. Fori=1,2,...,k = 1, define () to be the union of ¥ and the sct




13

of those nodes which are in the complement of 1 and reachable from some node in V by a path of
length no more than i. Then by Lemma 2 we have

| VO = V| 2cn,

and

|y(i+x)| - y(i)| >en,

for i=1,2.....k=2, where | V] and | ¥} are the cardinalitics of ¥ and V), respectively.
Since by the definition of the convolution problem =) C U, we have

{UV = | V] 2(k = Den.

Consider now the input pixels whose pixel locations are in U ~ V. Note that these input pixels
are needed to compute output pixcls at corresponding locations, and that they cannot be
regenerated from future inputs from the external memory. Thus they (or some equivalent amount
of information to specify them) must be stored in the device memory. Since the input pixels are
assumed to be indeterminates, a memory of size at least |U] - | V], or (k ~ 1)cn, is needed to
specify these pixel values at this tnoment.

Suppose that the convolution device generates output pixels in large bursts s¢ that no such
motnent exists when the number of pixcels that have been output is withia the range (1/2)mn £ kn.
Then there must be a moment when a set of at least 2kn ouiput pixels are generated in a single
burst. For producing these output pixels in a single burst all the input pixels at the carresponding
pixel locations (or equivalent amount of information) must be stored in the device memory im-
mediately before the burst. '

By Theorem 3 we conclude that the O(kn) memory needed by the systolic array of Theorem 1 for the 2-D
convolution is the minimum-possible, if we assume that each input pixel is allowed to be read in from the

external memory only once.

5. Concluding Remarks

The systolic array of this paper can execute #-D convolutions with only as many cells as there are non-zero
clements of the kernel. Note that zeros in the kernel arise not only from conversion of n-D problems to 1-D
problems, but also directly from applications. The shift registers in the cells can probably be most economi-
cally implemented using RAM chips, since the size and cost of these chips are decreasing at a very rapid rate,
and are likely to continue to do so.

The cells of the array may be considered as the individual scgments of a pipcline. In addition, the adder
and multiplier of each cell may be pipelined to any degree. This two-level pipelining provides high computa-




tion rates and is suitable for complex arithmetic units, such as floating point units, which are typically

implemented as multi-stage pipelines.

The approach presented for multi-dimensional convolutions has the advantage that the signal is accessed in
“natural” row (or column) order, which corresponds to the way the signal is stored in the linear memory of

the host. This allows the use of direct memory access (IDMA) rather than requiring addresses to be generated

with software, which should enhance throughput significantly. The same remarks apply to the generation of

the results.

Finally, if the number of cells in the systolic array is insufficient for a particular problem, the problem can
be decomposed by passing the signal through the array multiple times, each time with a successive segment of
the kernel. For the sccond and successive passes, the results of the previous pass are entered into the adder of
the lefumost cell (the y input), rather than a constant zero stream. This assumcs that the signal can be accessed
several times (i.e.. the processor is not being used in a real time, flow-through modc), and that a path exists

between the output and the y input of the array.
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